Appendix B

Changes between
UML Versions

When this book first appeared on the shelves, the UML was in version
1.0. Much of it appeared to have stabalized and it was in the process of
OMBG recognition. Since then there have been a number of revisions. In
this appendix | describe the significant changes that occur, and how
they affect the material in this book. If you have an earlier printing of
the book, this summarizes the changes so you can keep up to date. |
have made changes to the book to keep up with the UML, so if you
have a later printing it describes the situation as it was at that time.

Revisions in the UML

The earliest public release what came to be the UML was version 0.8 of
the unified method. It was released for OOPSLA (October) 1995. It was
called the “Unified Method” and was the work of Booch and Rum-
baugh, as Jacobson did not join Rational until then. In 1996 they
released a 0.9 and a 0.91 version that included Jacobson’s work. At this
time they changed the name to the UML.

Version 1.0 of the UML was submitted to the OMG Analysis and
Design Task force in Janurary 1997. It was then combined with other
submissions and a single proposal for the OMG standard was made in

v



APPENDIX B ¥ CHANGES BETWEEN UML VERSIONS

Septemember 1997, this was called version 1.1. This was adopted by
the OMG towards the end of 1997. In a fit of darkest obfustication the
OMG called this standard version 1.0. So it was both OMG version 1.0
and Rational version 1.1, not to be confused with Rational 1.0. In prac-
tice everyone calls that standard version 1.1.

UML 1.1 had a number of minor visible changes from version 1.0.

When the OMG adopted UML 1.1 they set up a Revision Task Force
(RTF) chaired by Cris Kobryn to tidy up various loose ends with the
UML. They interally released version 1.2 in July 1998. This release was
internal in that 1.1 remained the official UML standard. You could
think of version 1.2 as a beta release. In practice this distinction hardly
mattered as the only changes in the standard were editorial: fixing
typos, grammatical errors and the like.

A more significant change occurred with version 1.3, most notably
affecting Use Cases and Activity Diagrams. The amigos’ user guide
and reference manual were published late in 1998 with the 1.3
changes, before the official 1.3 documents were made public, which
caused some confusion.

In April 1999 the RTF will submit version 1.3 to the OMG as new offi-
cial standard of the UML. The OMG Analysis and Design Task Force
will then take over the UML again and consider any future moves. Of
course this is what | currently know, check my web site for future
update information.

Changes in UML Distilled

As these revisions go on, I’ve been trying to keep up by revising UML
Distilled with subsequent printings. I've also taken the opportunity to
fix errors and make clarifications.

The 1st through 5th printings are based on UML 1.0. Any changes
between these printings were minor. The 6th printing took UML 1.1
into account, (however due to a glitch the inside covers still show 1.0
notation). The 7th through 10th printings were based on UML 1.2.
Those printings based on UML after 1.0 have the UML version number
on the front cover. (Unfortunately a printing error meant that some
copies of the 10th printing were labelled as 1.3 — I’'m sorry about that.)



CHANGES FROM UML 1.0T0 1.1

In the rest of this appendix I'll summarize the two major changes in
the UML, from 1.0 to 1.1 and from 1.2 to 1.3. | won’t discuss all the
changes that occur, but rather only those that

= change something | said in UML Distilled, or

= represent important features that | would have discussed in UML
Distilled

I am continuing to follow the spirit of UML Distilled: to discuss the key
elements of UML as they affect the application of the UML within real
world projects. As ever, the selections and advice are my own. If there
is any conflict between what | say and the official UML documents, the
UML documents are the ones to follow. (But do let me know, so | can
make corrections.)

I have also taken the opportunity to indicate any important errors or
omissions in the earlier printings. Thanks to the readers who have
pointed these out to me.

Changes from UML 1.0to 1.1

Type and Implementation Class

On page 55 of UML Distilled, I talked about perspectives, and how they
altered the way people draw and interpret models, in particular class
diagrams. UML now takes this into account by saying that all classes
on a class diagram can be specialized as either types or implementa-
tion classes.

An implementation class corresponds to a class in the software envi-
ronment in which you are developing. A type is rather more nebulous;
it represents a less implementation-bound abstraction. This could be a
CORBA type, a specification perspective of a class, or a conceptual
perspective. If necessary, you can add stereotypes to differentiate fur-
ther.

You can state that for a particular diagram, all classes follow a particu-
lar stereotype. This is what you would do when drawing a diagram
from a particular perspective. The implementation perspective would



APPENDIX B ¥ CHANGES BETWEEN UML VERSIONS

use implementation classes, while the specification and conceptual
perspective would use types.

You use the realization relationship to indicate that an implementation
class implements one or more types.

There is a distinction between type and interface. An interface is
intended to directly correspond to a Java or COM style interface. Inter-
faces thus have only operations and no attributes.

You may use only single, static classification with implementation
classes, but you can use multiple and dynamic classification with
types. (I assume this is because the major OO languages follow single,
static classification. If one fine day you use a language that supports
multiple or dynamic classification, that restriction really should not

apply.)

Complete and Incomplete Discriminator Constraints

On page 78 of previous printings of UML Distilled, | said that the {com-
plete} constraint on a generalization indicated that all instances of the
supertype must also be an instance of a subtype within that partition.
UML 1.1 defines instead that {complete} indicates that all subtypes
within that partition have been specified, which is not quite the same
thing. | have found a lot of inconsistency on the interpretation of this
constraint, so you should be wary of it. If you do want to indicate that
all instances of the supertype should be an instance of one of the sub-
types, then | suggest using another constraint to avoid confusion. Cur-
rently, | am using {mandatory}.

Composition

In UML 1.0, using composition implied that the link was immutable
(or frozen; see below), at least for single-valued components. That con-
straint is no longer part of the definition.

Immutability and Frozen

UML defines the constraint {frozen} to define immutability on associa-
tion roles. As it’s currently defined, it doesn’t seem to apply it to
attributes or classes. In my practice, | now use the term frozen instead



CHANGES FROM UML 1.2 (AND 1.1) TO 1.3

of immutability, and I’'m happy to apply the constraint to association
roles, classes, and attributes.

Returns on Sequence Diagrams

In UML 1.0, a return on a sequence diagram was distinguished by
using a stick arrowhead instead of a solid arrowhead (see page 104).
This was something of a pain, since the distinction was too subtle and
easy to miss. UML 1.1 uses a dashed arrow for a return, which pleases
me, as it makes returns much more obvious. (Since | used dashed
returns in Analysis Patterns, it also makes me look influential.) You can
name what is returned for later use by using the form “enoughStock :=
check()”.

Use of the Term “Role”

In UML 1.0, the term role primarily indicated a direction on an associ-
ation (see page 57). UML 1.1 refers to this usage as an association end.
There is also a collaboration role, which is a role that an instance of a
class plays in a collaboration. Many people still use the term role to
mean a direction of an association, although association end is the for-
mal term.

Changes from UML 1.2 (and 1.1) to 1.3

Use Cases

The changes to use cases involve new relationships between use cases.
1.1 has two use case relationships: «uses» and «extends», both of
which are stereotypes of generalization. 1.3 offers three relationships.

e «include» - a stereotype of dependency. This indicates that the
path of one use case is included in another. Typically this occurs
when a few use cases share common steps. The included use case
can factor out the common behavior. An example from an ATM
machine might be that “Withdraw Money” and “Make Transfer”
both use “Validate Customer”. This replaces the common use of
«USES».



v APPENDIX B ¥ CHANGES BETWEEN UML VERSIONS

= generalization (no stereotype). This indicates that one use case is a
variation on another. Thus we might have one use case for With-
draw Money (the base use case) and a separate use case to handle
the case where the withdrawal is refused due to lack of funds. The
refusal could be handled as a use case that specializes the with-
drawal use case. (You could also handle it as just another scenario
within the Withdraw Money use case.) A specializing use case like
this may change any aspect of the base use case.

- «extend» - a stereotype of dependency. This provides a more con-
trolled form of extension than the generalization relationship. Here
the base use case declares a number of extension points. The
extending use case can only alter behavior at those extension
points. So if you are buying a product on line, you might have a
use case for buying a product with extension points for capturing
the shipping information and capturing payment information.
That use case could then be extended for a regular customer where
this information would be obtained a different way.

One of the confusions of all this is the relationship between the old
relationships and the new. Most people used «uses» the way the 1.3
«includes» is used, so for most people we can say that «includes»
replaces «uses». People used 1.1 «extends» in both the controlled man-
ner of the 1.3 «extends» and as a general overriding in the style of the
1.3 generalization. So you can think that 1.1 «extends» is split into the
1.3 «extend» and generalization. Now although this explanation cov-
ers most usage of the UML that | saw, it isn't the strictly correct way of
using those old relationships. However most people didn't follow the
strict usage and | don't really want to get into all that here.

Activity Diagrams

At 1.2 there were quite a few open questions on the semantics of Activ-
ity Diagrams. So the 1.3 effort did quite a lot of tightening up on these
semantics.

For conditional behavior the diamod shaped decision activity can now
be used for a merge of behvior as well as as a branch. Although neither
branches or merges are necessary to describe conditional behavior, it is
increasingly common style to show them so that you can bracket con-
ditional behavior.



CHANGES FROM UML 1.2 (AND 1.1) TO 1.3

The synchronization bar is now referred to as a fork (when splitting
control) or as a join (when synchronizing control together). You can no
longer add arbitrary conditions to joins. You must also follow match-
ing rules to ensure forks and joins match up. Essentially this means
that each form must have a corresponding join that joins the threads
started by that fork. However you can nest fork and joins, and you can
eliminate forks and joins on the diagram when threads go directly
form one fork to another fork (or one join to another join).

Joins are only fired when all incoming threads complete. However you
can have a condition on a thread coming out of a fork. If that condition
is false, then that thread is considered complete for joining purposes.

Multiple Triggers are no longer present. Instead you can have
dynamic concurrency in an activity (shown with a * inside an activity
box). Such an activity may be invoked several times in parallel. All its
invocations must complete before any outgoing transition can be
taken. This is loosely equivalent, although less flexible, to a multiple
trigger and matching synchronization condition.

These rules reduce some of flexibility of activity diagrams, but they do
ensure that acitivity diagrams are truly special cases of state machines.
The relationship between activity diagrams and state machines was a
matter of some debate in the RTF. Future versions of the UML (after
1.3) are expected to make activity diagrams a completely different
form of diagram.



APPENDIX B ¥ CHANGES BETWEEN UML VERSIONS



	Changes between UML Versions
	Revisions in the UML
	Changes in UML Distilled
	Changes from UML 1.0 to 1.1
	Type and Implementation Class
	Complete and Incomplete Discriminator Constraints
	Composition
	Immutability and Frozen
	Returns on Sequence Diagrams
	Use of the Term “Role”

	Changes from UML 1.2 (and 1.1) to 1.3
	Use Cases
	Activity Diagrams



